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Abstract-A constitutive model that accounts for the effects of fiber failure on the high temperature
mechanical behavior of metal-matrix composites (MMC) reinforced by long brittle fibers is
presented. Weibull statistics are used to describe the strength of the fibers and the assumption of
'global load sharing' is used to determine the average stress in the fibers. The developed three­
dimensional constitutive model involves a 'damage parameter' that accounts for the accumulated
fiber failure. A method for the numerical integration of the constitutive equations is developed. The
proposed model is used together with the finite element method to predict the life of a plate with a
hole loaded in tension in the direction of the fibers under creep conditions. (C 1997 Elsevier Science
Ltd.

I. INTRODUCTION

A constitutive model for the mechanical behavior of metal-matrix composites reinforced
by elastic fibers was presented in Part 1. In developing that model, we assumed that the
fibers remain intact as the composite deforms. However, it has been established that fibers
in many composites experience strength degradation during deformation (Prewo, 1986;
Thouless et al., 1989). The effects of fiber failure on the creep behavior of metal-matrix
composites are examined in detail in the present paper.

The material systems considered are the same as those of Part 1. The response of the
composite to shear loads relative to the fibers will be matrix-dominated, and fiber failure is
not expected to affect significantly the performance of the composite under such loads. On
the other hand, when axisymmetric loads are applied, fiber failure plays a very important
role and can lead eventually to failure of the composite.

When a composite specimen is subjected to a uniaxial stress in the direction of the
fibers, load is continuously transferred from the matrix to the fibers. When the applied
stress is held constant and if the fibers remain intact, the corresponding axial strain rate
decreases since the matrix stress relaxes due to matrix creep; as time progresses, the matrix
is completely unloaded, the whole load is carried by the fibers, and the strain rate vanishes
eventually. However, when fibers break, the fibers are locally unloaded, load is transferred
back to the matrix, and the strain rate increases; this can cause, in turn, more fibers to
break, and can lead eventually to failure of the composite component. A simple model that
accounts for fiber breakage in a uniaxial tension test has been presented by McLean (1989).
Theoretical studies on fiber failure stochastics within the framework of'globalload sharing',
whereby the load shed from a broken fiber is shared nearly equally among all intact fibers,
have been carried out by Curtin (1991) for composites with weak interfaces. More recently,
Du and McMeeking (1995) made use of Curtin's results and studied in detail the effects of
fiber breaks and the consequential stress relaxation in the broken fibers.

In this paper we study in detail the effects of fiber failure on the high temperature
mechanical behavior of metal-matrix composites. In a way similar to that of Part L a three
dimensional constitutive model for the composite is developed in two steps: (i) one in which
shear loads relative to the fibers are applied, and (ii) another in which the composite is
subjected to axisymmetric loads relative to the fibers. For the case of the shear loads, it is
assumed that equations (16)-(19) of Part I that describe the behavior of the composite
under shear loads, are valid, even when the fibers fail. When axisymmetric loads are applied
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to the composite, Curtin's (1991) methodology is used to account for fiber failure. In fiber­
reinforced metal-matrix composites, a weak fiber-matrix bond has been found to be essential
to ensure good longitudinal strength (Jansson et al., 1991). When a fiber breaks, the low
shear strength of the interface diminishes any local stress concentrations, thus justifying
the assumption of 'global load shearing'. The developed constitutive model involves a
'damage parameter' w which takes values in the range 0 ~ w ~ I and accounts for fiber
failure. When (l) = 0, there is no fiber failure and the model reduces to that of Part 1. Values
of w greater than zero account for the fact that, as fibers fail, the average stress in the
unbroken fibers decreases, which in turn increases the stress carried by the matrix and the
corresponding creep strain rate. The limiting value w = I corresponds to the case where
the local load-carrying capacity of the composite is reduced to zero and the corresponding
strain rate becomes infinite. In deriving the model, we assumed that the fiber-matrix sliding
stress is constant and ignored the effects of fiber relaxation near fiber breaks. A method for
the numerical integration of the proposed model is presented and the developed constitutive
equations are implemented in a general-purpose finite element program. The proposed
constitutive equations are used together with the finite element method to study the evol­
ution of damage in a plate with a hole loaded in tension in the direction of the fibers under
creep conditions.

Standard notation identical to that of Part I is used in the present paper.

2. THE FIBER DOMI]\;ATED BEHAVIOR FOR AXISYMMETRIC LOADING WITH
DAMAGE

2.1. McLean's modelfor uniaxial tension with damage
In Section 4.1 of Part I, we gave a detailed presentation of McLean's model for the

case where the fibers remain intact while the composite deforms. For the case of uniaxial
tension, McLean assumes that the axial strain in the matrix and the fibers equals the
macroscopic axial strain t:, and that uniform stresses develop in the fibers and the matrix
with the only non-zero components being an3 = al' and (Jm.13 = am' In the absence of any
fiber failure. we have that

(J = fa,!n + (I -f)alJl and (1)

where ai" = Eft: is the stress in the unbroken fibers.
Curtin (1991) and Du and McMeeking (1995) used Weibull statistics to describe the

strength of the fibers and carried out theoretical studies of fiber failure stochastics within
the framework of global load sharing, for composites with weak interfaces. When the
applied load in the direction of the fibers is such that the corresponding axial strain increases
monotonically with time (i.e., no load reversals), they concluded that the average fiber
stress O't is a nonlinear function of the macroscopic strain 10 :

(

?smT L )1 1m-II
h S

- 0 0 0
were (= D (2)

So and Lo are strength and length parameters of the Weibull distribution, m is the Weibull
modulus, and To is the frictional sliding resistance between the fibers and the matrix. The
derivation of eqn (2a) can be found in Ou and McMeeking (1995) (see their cquation (10)
on page 706) and will not be repeated here. Note that, if fiber failure is ignored, then

(3)

Equations (2a) and (3) make it clear that fiber failure reduces the stress carried by the
fibers. The second term in the square brackets of eqn (2a) can be viewed as a measure of
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the 'damage' in the composite; in fact, eqn (2a) can be obtained from (3) if the elastic
modulus Et of the fibers is replaced by the secant modulus Ej"', i.e.,

[
1 (E £)m+ I]- 5CC se(' f

(Jt = Et e, where Et = 1-:2 s; Et ·

Using eqn (2a) we can define the corresponding tangent modulus as

de [ m+2 (Ee)m+l]E Ia" = _I = I _ __ _._1 E
/ - dB 2 S, /.

(4)

(5)

Summarizing, we mention that, for the case of uniaxial tension with monotonically increas­
ing 10, eqns (I a, b) are replaced by

and (6)

when fiber failure is taken into account.
Using the last two equations we can readily show that

I [0'] i I [0' ]f. = -I- - +B'«(J-ext and -- = -1- - +B'«(J-ext ,
-OJ E .lEt" -OJ E

where OJ is a 'damage parameter' defined as

fEr (ErB)m+ 1
W(8) = (m+2r

2E
S; ,

(7)

(8)

the back stress ex is defined as the part of the stress carried by the fibers, i.e., ex = f61,

E = fEf + (1-f)Em, and B' = BEm/[(1 -f)"-I E]. The damage parameter W is proportional
to the second term in the square brackets of eqn (2a) and has been normalized in such a
way that the strain rate 8 approaches infinity as w ---> 1. When w = 0 (intact fibers), eqns
(7a, b) reduce to equations (24a, b) of Part 1. A discussion of the physical meaning of OJ is
given in the Appendix.

The instantaneous response of the composite is elastic and the corresponding values
of the strain, the back stress, and the damage parameter immediately after the application
of the load are:

where

Eo = fEio' + (I-f)Em and E to' = [I - ~ (Et
lr+ 1] Ef .

(9)

(10)

Note that eqn (9a) is a nonlinear equation that defines 80' When the corresponding values
of OJo is greater than one, then the composite fails instantaneously (see Appendix).

The response of the system as w ---> 1 is such that
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Fig. I. Temporal variations of the strain G, the damage parameter w, and the back stress !Y. for
uniaxial tension test with values of Ed Em = 3,/= 35%, n = 3, m = 5, and (JiS, = 0.25.

where

co. = S., (_2_ ~.)l!(m+ i) (1 E)
'-'" 2j' and 'X" =fE( 1- fn+2.fE./ 8",.E( m+ E/

(11)

(12)

Equation (lId) shows that, at w = I the fibers are suddenly unloaded and the load is
transferred instantaneously to the matrix.

We consider next the case of a 'creep test' in which a constant tensile stress (J is applied
in the direction of the fibers. Equations (7) are integrated numerically and the evolution of
the solution is determined until w reaches the value of one. Figure I shows the temporal
variation of 8, 'X, and w for EtiEm = 3,/= 0.35, n = 3, m = 5, and (JIS, = 0.25; the nor­
malized quantities used in Fig. 1 are defined as

8 = 8/1::,,,:1 = 'XI'Xm and r = tB'EfS;.-i . (13)

We conclude this section with a discussion of the case where the applied uniaxial stress
(J is such that the corresponding axial strain does not increase monotonically with time. In
such a case, the fraction of broken fibers on any cross-section depends on both the current
value of the applied stress (J and the maximum value of (J in the loading history of the
specimen. Equation (2a) is now replaced by (Cheng, 1996)
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(14)

where ar"(8) = E18, ar;;'axC8) is the maximum tensile value of at' in the loading history of
the specimen (ar~wx ;::: 0), and

{
I ife > 0,

13= ° if 8:::; 0.
(15)

The conditions given in eqn (15) above are based on the assumption that fiber breaks
affect the material response in tension but have no effect when the specimen is loaded in
compression along the fibers. The corresponding definitions of wand Ef"" are

rE f3a.
Ul1

(8) [aU" (e) J'"wee) = (m+2)J-'1 _1_ Imax ,
E 2Sc Sc

and

" MI' ( lem+2 E, )E an = -' = I - --- --w E
I d8 m+2 fE

I
/.

Using the definition of w, we can readily show that

.' d'U" { I if ar
n

= ar~W\
w = (Am+ I)w-I

- where). = .
a,!" ° otherwIse.

and ;; > 0,

( 16)

(17)

(18)

In deriving eqn (I8a), we took into account that l.ar~lQX = lea,!". Finally, using the above
results, we can show that the evolution equations for the axial strain and the back stress
become

where

. (Am+2)EL =fEy"+(I-j)Em = 1- m+2-w E.

( 19)

(20)

Note that, when 8 > 0, a,!" == EI8 = ar~wx and i; > 0, then 13 = Ie = 1, E L = (1 - w)E and eqns
(19) reduce to (7). Also, as the damage parameter w approaches unity (w ~ 1), Ie = 1 and
E L = (1-w)E ~ 0, so that i; ~ oc.

2.2. A three-dimensional version of the McLean model with damage
Here, we proceed in a way similar to that used in Section 4.2. of Part I, where there

was no damage. The applied macroscopic load is axisymmetric of the form shown in Fig.
Ib of Part I, i.e. alT = an' = ap and a33 = a". We assume again that the stresses in the
fibers and the matrix are uniform and of the form
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[a, 0

~J
[a, 0 0]

[at] = ~ (Jp and [am] = ~ (Jp o . (21 )

0 0 (1m

Using equation (Sa) of Part 1, we readily conclude that

(22)

where the back stress is defined again as :J. = fo/ It is also assumed that the corresponding
axial strain component in the fibers and the matrix is equal to the axial macroscopic strain
1'33 = I'm i.e.,

(23)

Equation (5b) of Part I implies that

(24)

The damage parameter OJ is defined again as

(25)

so that

(26)

where now

(27)

and f3 and ), take the values of I or 0 according to eqns (15) with [; = "n' and (l8b) with
(J;m defined by eqn (27) above.

The average stress in the fibers is given by eqn (14), which can be written as

1 E(ft = (I - cOJ) (J'!n where C = ----2 f''E .
m+ . /

(28)

Using an argument similar to that used by Hild et al. (1992), we readily conclude that the
elastic constitutive equation for the damaged fibers can be written as

=~: ]l[::1·
1/(I-cOJ) (f,]

(29)

Since the damage parameter OJ is a non-linear function of Gn and (Jp (see eqns (25) and
(27) above), the last equation can be viewed as a non-linear transversely isotropic elastic
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constitutive equation that relates the average stress to the average strain in the fibers.
Equation (24) now becomes

'W!(l~ JEl
(30)

Using a procedure similar to that of Part I, we substitute first the constitutive equations for
the fibers and the matrix in the strain continuity equation 8m = 81'133' Equations (22b), (26)
and (27) are then used to eliminate (J1'1 and OJ, and the resulting equation is used to determine
:i in terms of CIt!' CIp , (J", (Jp and r:J.. Finally, substituting the expression for :i into (30) and
using (22b), (26) and (27) to eliminate (Jm and (V, we obtained the following equation for
the macroscopic strain rates:

j
81 I) [IIET
~22 = -vr~ET

8 33 -VUEL

where

-VrIET

IIET

(
Am + 2 E ) (Am + 2 E )

Ef"n = 1- --2-j--:--.. wEt, Vi = 1- --? r .. w Vi'm+ Ef m+_ JEt

and

(32)

(33)

(34)

(35)

2Em
L=--.

3 EL

(36)

The evolution equation of the back stress (:i = fiJ t) is found to be

3. A PROPOSED NEW MODEL

(37)

The results developed in the previous section are now incorporated in a three-dimen­
sional constitutive model. As mentioned in the introduction, we assume that fiber failure
does not affect significantly the response of the composite when shear loads relative to the
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fibers are applied, so that equations (16)-(19) of Part I can still be used for such types of
loading.

The macroscopic response of the composite is assumed to be transversely isotropic,
and the unit vector n in the direction of the fibers is used to define the axis of rotational
symmetry. The total strain in the composite is written as the sum of the elastic and creep
parts:

(38)

In the following, we discuss the constitutive equations for 8" and 8" for the composite.

3.1. Elasticity
The elastic constitutive equation can be written in rate form as

8(' = ce-I :u, (39)

where the fourth-order tangent elasticity tensor e(w, i) for the homogenized transversely
isotropic composite depends, in general, on the current value of the damage parameter w
and the direction of loading through I..

When the fibers are aligned with the X 3 coordinate direction (i.e., n = e,), eqn (39) can
be written in matrix form as follows

IIET -vTIET -vL/EL 0 0 0

- vTIET IIET -vLIEL 0 0 0

-vLIEL -vLIEL llEL 0 0 0
[Cr l

0 0 0 l/GT 0 0

0 0 0 0 IIGL 0

0 0 0 0 0 l/G[

(40)

where E L , ET , GL, VLand VT are the five independent elastic moduli of the composite, and

(41)

The moduli EL , ET, vLand vT are defined in eqns (32)-(35) ; the shear modulus GI. is assumed
to be independent of wand is estimated by (Christensen, 1979, p. 84)

(I +f)Gt + (I -f)Gm

GL = (I _ .f)Gt+ (I +f)G
m

Gll
"

(42)

where Gm and Gj are the elastic shear moduli of the matrix and the fibers.
The constitutive equations developed here have a form similar to that of Part I. It

should be emphasized though, that the effective elastic tangent moduli are now strong
functions of the damage parameter w. When w = 0, the above equations reduce to those
presented in Part I; also, in the limit as w ~ I, the effective tangent modulus E[ approaches
zero, and 8e becomes infinite.
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3.2. Creep
The general form of the constitutive equations that account for fiber failure during

creep is

tCI = g(a-lX,w,).,S), (43)

where IX is the back stress tensor, W is the damage tensor, g is a tensor-valued isotropic
functions, S is the collection of material parameters S = {Ef, vf' E"" v"" B, n,}; 5,., m}.

In the present model, the back stress IX and the damage tensor (J) are assumed to be in
the direction of n, i.e., IX = emn, W = wnn; it should be noted, however, that more com­
plicated forms may be necessary when effects such as fiber debonding must be accounted
for.

In the following, we use the results of Section 3.3 of Part I for shear loads together
with those of Section 2.2 in the present paper for axisymmetric loading and develop
constitutive equations for general types of loading. These results are combined in a way
similar to that used in Part I. With respect to the coordinate axes shown in Fig. I of Part I
and for an arbitrary orientation of the X I-X2 axes on the transverse plane, we write the
following equations for the creep strain rate:

[

X(0"11-0"22)/2+K5

[i;") = ~ B(1-f) L;: I XO"l2

XO"I3

(44)

where L; = 52 + (XO"y. For convenience, we repeat the definition of the quantities entering
the above equation: 0"" = 0"33' O"p = (0"]] +0"22)/2,

(45)

The quantity x(n,j) is given by equations (17)-( 19) of Part I, and K and L are defined in
eqn (36) in the present paper.

The constitutive equations developed here have a form similar to that of Part I. It
should be emphasized though, that K and L are now strong functions of the damage
parameter w. When w = 0, the above equations reduce to those presented in Part I;
whereas, in the limit as w ---> I, the effective tangent modulus EL approaches zero, and, as a
consequence, K, Land ta become infinite.

3.3. The evolution of the back stress and the damage parameter
The general form of the constitutive equations for de and ware

de = h(a-lX,o-,w,),s), w = r(a,s,history,s), (46)

where hand r are tensor-valued isotropic functions, and the argument 'history' in r denotes
dependence on the history of deformation.

As mentioned earlier, the back stress IX and the damage tensor ware assumed to be of
the form IX = emn, and w = wnn.

The evolution of ct. is given by

~_6'" _ (E'.>1. ')6'p BEm(l-f) n_I(O"n-ct._)
- E +2(1 f) E Vf-'m E + E Lc I f O"p,

fE!"n L f L L -

where L,: = 52 + (XO"y.
The damage parameter w is defined as

(47)
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(48)

{
I if Gn > 0,

and fJ = .o If Gn :::; O.
(49)

The parameter}. that enters the expressions of Eran and VI is defined as

{

I if u.un = u.un, f fma.\
,.1.=

o otherwise.

and t/1 > 0,
(50)

The instantaneous response of the composite to applied loads is 'purely elastic'. The values
of the strain eo = e~, the back stress :X(h and the damage parameter W oimmediately after the
application of the load are determined from the integration of eqns (39), (47), and the use
ofeqn (48) respectively; these values are the three dimensional counterparts ofthe quantities
in eqn (9) for the case of uniaxial tension.

4. FINITE ELEMENT IMPLEMENTATION OF THE CONSTITCTIVE MODEL

In this section, we discuss the implementation of the general form of 1he constitutive
model described in the previous section in a finite element program. In a finite element
environment, the solution of the creep problem is developed incrementally and the consti­
tutive equations are integrated at the element Gauss points. In a displacement based finite
element formulation the solution is deformation driven. At a material point, the solution
(O'm en' am OJn) at time tn as well as the strain e/1+ I at time tn+ I = tn+ L'it are supposed to be
known and one has to determine the solution (0'/1+ I, Qtnt I' (J)11~ I)'

4.1. Numerical integration of the constitutive equations
We used the backward Euler method to integrate the evolution equations for ee, eer,

and Qt. Starting with the elasticity eqn (39) we write

(51 )

where L'ie = en +I -en and L'iecr = e~r~ I _e~r are the total- and creep-strain increments. The
other constitutive equations are written as

(52)

(53)

(54)

where AO' = O'n+ I -O'n- The value of Ie for the increment is determined as described in the
following. Let u'J':nax be the maximum local non-negative value of u'Jn in the history of
deformation up to time tn at the start of the increment. Then

where

;. = {I if (u!")n+ I > u'J':nax. and Gn~ I > en,

o otherwise
(55)
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(56)

(Cn)n+ 1 = n· 8n+I' n, (O"p)n+ 1 = 0/2)O"n+ I: (I - nn), n is the unit vector in the direction of the
fibers, and I is the second-order identity tensor. Also, the function r(O"n+ I> 8n+I) is defined
as

(57)

where

(58)

At the start of an increment the value of (O"p)n is used in (56) instead of (O"p)n+ I> and), is set
to either unity or zero according to (55). At the end of the integration the determined value
of (O"p)n+ 1 is used in (56) in order to check the correctness of the used value for Jc.

Summarizing, we write

where

(62)

We choose L\8er, L\oc, and Wn+1 as the primary unknowns and treat (59)-(61) as the basic
equations in which O"n+ 1 is defined by (62). The solution is obtained by using Newton's
method. The first estimates for L\8er and L\oc used to start the Newton loop are obtained by
using a forward Euler scheme, i.e., (L\8cr)est = g(O"n - OCm Wm Jcn) L\t and
(L\oc)est = h(O"n -OCm L\O"n/L\t, WmAn) L\t, where L\O"n = O"n - O"n-l ; also the first estimate for Wn+1

is given by (w)est = r(O"m8n+I)'
Once L\8er, L\oc, and Wn+1 are found, eqn (62) defines the stress O"n+1> OCn + 1 = ocn+L\oc,

and this completes the integration procedure.
The case of plane stress is related in a way similar to that described in Section 6.3 of

Part I.
We conclude this section with a discussion of the numerical treatment of the limiting

case W = 1. As W approaches unity, the strain rate approaches infinity, thus introducing
numerical difficulties. In our finite element calculations, the damage parameter W was not
permitted to grow beyond a critical value, say W er = 0.99. Once this critical value was
reached at an integration point, W was kept equal to W er and the corresponding back stress
rt was let to evolve until the value rt = 0, corresponding to complete fiber unloading, was
reached; the calculations were continued beyond this point with W = W er and rt = O.

4.2. Linearization moduli
In an implicit finite element code, the overall discretized equilibrium equations are

written at the end of the increment, resulting in a set of nonlinear equations for the nodal
unknowns. If a full Newton scheme is used to solve the global nonlinear equations, one
needs to calculate the so-called 'linearization moduli' /
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(63)

For simplicity, we drop the subscript (n+ 1) with the understanding that all quantities are
evaluated at the end of the increment, unless otherwise indicated. Starting with the elasticity
eqn (51), we find

(64)

where L'l.1:'" = s~+ 1-s~ The differentials oscr, 017. and ow are evaluated from eqns (52)-(54) as
follows:

[
Og . Og]oser = M -;;- :(041 - 017.) +~ ow ,
os un

[
Oh 1 oh Oh]

017. = L'l.t ;;-:(041-017.)+ A~: 041+ -1-oW ,
vS ilt vG cw

or or
ow = ;) : 041 + " :oS,

CG 0S

(65)

(66)

(67)

where s = 41-17.. Using (67) to define ow, we can solve (65) and (66) for 017. and os" to find

where

017. = A : 041 +B : as,

oscr = D : 041 +E : os,

(68)

(69)

(
Oh)--I

A = M J+M os : (70)

(
Oh)-l oh or

B = L'l.t J + L'l.t ~s :;;-- " '
v vW uS

[
Og og or] (Og og ar)

D=M os:(J-A)+ aWOG' E=L'l.t - os:B+ owa~'

(71)

(72)

J being the fourth-order identity tensor.
Finally, substituting the expression for oscr into (64) and solving for OG/os, we find

(
aC" ar)C"-C":E+-
o

:L'l.se".
W (,S

(73)

5. AN EXAMPLE: A PLATE WITH A HOLE

The model developed in Section 3 is implemented in the ABAQUS general-purpose
finite element program (Hibbitt, 1984). The constitutive equations are integrated by using
the method presented in Section 4.

The problem of a plate with a hole discussed in Section 7 of Part I is analyzed again,
using the new constitutive model that accounts for fiber failure. The same geometry,
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Fig. 2. Varialions of the axial stress un/uapp, the axial strain "22, and Ihe damage parameter OJ along

the cross-fiber direction al time t = 20 sec, 1, 5 and 8 hours.

material properties, and finite element mesh are used. The fiber diameter is assumed to be
D = 100 ,um. The Weibull modulus of the fibers is m = 5, and the gauge strength is So = 1.29
GPa for a gauge length Lo = 1 m at 600c C. The interface sliding stress '0 is sensitive to
temperature, decreasing from about 120 MPa at ambient temperature to about 20 MPa at
600c C. The value of '0 = 20 MPa at 600°C is used in the calculations. Using eqn (2b), we
find the characteristics stress for this fibrous system to be Sc = 3.36 GPa at 600cC. The
critical value of the damage parameter used in the calculation is W cr = 0.99.

Plane stress conditions are assumed, and a constant tensile stress of (lapp = 250 MPa is
applied in the direction of the fibers. The load is increased linearly with time to its final
value of 250 MPa in 20 seconds and is then kept constant. Again, due to the symmetries of
the structure and the applied loads, we only consider a quarter of the plate. Four-node
isoparametric elements with 2 x 2 Gauss integrations are used in the calculations.

Figure 2 shows the variations of the axial stress (J22, the axial strain e22, and the damage
parameter w ahead of the hole along the xl,axis at time t = 20 seconds, 1, 5, and 8 hours.
The stress concentration factor at the root of the hole just after the load is fully applied
(t = 20 s) is about 3.5, corresponding to a local tensile stress of about 875 MPa. The value
of the damage parameter w at the root of the hole is about 0.10 at that instant. As discussed
in the Appendix, the elastic strength of the composite is about 1090 MPa. The damage
parameter w increases with time at the root of the hole and eventually causes local failure.
The curves shown in Fig. 2 make it clear that a crack like defect is formed at the root of
the hole and propagates along the XI-axis. The stress is relaxed in the fully damaged region
due to fiber unloading; the small non-zero value of stress carried by the damaged region as
shown in Fig. 2a, is due to the fact that the damage parameter is not let to grow beyond
the critical value of W cr = 0.99.
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Fig. 4. Contours of the damage parameter w at time t = 8 hours.

Figure 3 shows contours of the axial stress at time t = 20 seconds and 8 hours. The
stress concentration moves with the 'crack tip' of the aforementioned defect. Figure 4 shows
contours of the damage parameter w at time t = 8 hours. The extent of 'crack propagation'
is evident in that figure.
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APPENDIX: THE DAMAGE PARAMETER w

The physical meaning of the damage parameter w is discussed in this section. The response of the composite
is assumed to be purely elastic, i.e., both the fibers and the matrix can deform only elastically. For simplicity, we
consider uniaxial loading in the direction of the fibers with a monotonically increasing axial strain G.
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Using the McLean assumptions, we can write

(74)

Equations (74b) can be written as

Using eqn (74a), we find that the uniaxial stress-strain relationship of the composite is given by

where E = fE1+ (I -nEm. Recalling the definition of w :

jE (Eft)m+1w = (m+2)--.1 ­
2E S,

we can readily show that

so that

d(J =(l-w)E and dlf/= (I-,~"W)E
do d8 fE, f'

The (J-o and (jiB curves have a maximum at

(75)

(76)

(77)

(78)

(79)

w=1 and =fEI< I
wE' (80)

respectively. The corresponding maximum stress values are

_m+l( 2 E,)I/lm+I)E, m+l( 2 )l,(m~1I
(Jmux - m+2 m+2fE

f
~S" and (jrmax = m+2 m+2 S"

and occur at strains

(81)

(82)

respectively.
Equation (80a) makes it clear that, when the response of the composite is purely elastic. the value w = I

coincides with the point of instability on the (J-8 curve.
Figure 5 shows the variations of (J, (l = f(jj, (Jm, and w with strain 0, for EjlEm= 360/65,/ = 0.32, and m = 5;

the points of maximum stress are marked on the (J and (l curves.
For the material system used in the finite element calculations on Section 5 (E = 360 GPa, Em = 65 GPa,

f = 0.32, m = 5, So = 1.29 GPa, La = I m, To = 20 MPa, D = 100 /lm), we have S, = 3.36 GPa, and the maximum
stresses

occur at

respectively.

(Jmax = 1.09 GPa and Ifrmax = 2.34 GPa,

8max = 0.0080 and 8jmax = 0.0076,

(83)

(84)
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